
Security not by chance:
the AltusMetrum hardware

true random number generator

Tom Marble Informatique, Inc.

DebConf 14
Portland, USA

http://creativecommons.org/licenses/by-sa/3.0/

USB TRNG

● Why do we care about randomness?
● Risks specifically for GNU/Linux

(and /dev/random vs. /dev/urandom)
● AltusMetrum design for USB TRNG
● Measuring quality
● Current status & next steps
● Questions

Debian Video & IRC

● IRC /join #debconf-room329
● Live video stream

Why do we care about RNG?

● Generation of encryption keys (GPG)
● Synthesizing one time session keys
(https)

● In kernel sources of randomness
(sequence numbers)

PRNG vs. TRNG

● Psuedo random number generators
– fast (good for driving software tests)
– deterministic (predictable)

● Hardware (true) RNG
– based on entropy of a physical process
– acquiring quality entropy is slow
(/dev/random will block)

Security risks

● Public key cryptography (RSA) is
usually only used to encrypt a
session key

● The session key is used with a
symmetric cipher (AES) to encrypt
traffic

● An attacker doesn't have to break the
private key if they can guess the
session key

 Thomas Hühn

http://www.2uo.de/myths-about-urandom/

The fine print...

Hühn says

What about entropy running low?

It doesn't matter.

The underlying cryptographic building blocks
are designed such that an attacker cannot
predict the outcome, as long as there was
enough randomness (a.k.a. entropy) in the
beginning. A usual lower limit for “enough”
may be 256 bits. No more.

Does this occur in the wild?

Nadia Heninger (et al) Aug 2012:
Mining Your Ps and Qs: Detection of Widespread
Weak Keys in Network Devices

“Every software package we examined relies
on /dev/urandom to generate cryptographic keys;
however, we find that Linux’s random number
generator (RNG) can exhibit a boot-time entropy
hole that causes urandom to produce
deterministic output under conditions likely to
occur in headless and embedded devices.”

Linux entropy

● The Linux estimate of entropy is
deemed to be conservative

● https://eprint.iacr.org/2006/086.pdf
● G UTTERMAN , Z., P INKAS , B., AND R
EINMAN , T. Analysis of the Linux
random number generator. In Proc.
2006 IEEE Symposium on Security and
Privacy (May 2006), pp. 371–385.

https://eprint.iacr.org/2006/086.pdf

http://blog.cryptographyengineering.com/2014/03/how-do-you-know-if-rng-is-working.html

Would you like some entropy?

● The challenge with existing TRNGs
– Expensive
– Out of stock
– Closed designs

SimTec Entropy Key

● http://www.entropykey.co.uk/
● Please note that there is a very
long waiting period for Entropy
Keys at the moment. We currently
have no stock and do not have a
date for when we will have more.

http://www.entropykey.co.uk/

NeuG
● http://www.gniibe.org/memo/
development/gnuk/rng/neug.html

http://www.gniibe.org/memo/

rtl-entropy

● Introduced at LCA 2014
● DVB-T dongle used for SDR
● http://www.rtl-sdr.com/true-random-
numbers-rtl-entropy/

http://www.rtl-sdr.com/true-random-numbers-rtl-entropy/
http://www.rtl-sdr.com/true-random-numbers-rtl-entropy/

yes

Let's build one!

… because we can!

AltusMetrum
● Over 15 open hardware designs

– STM32L (ARM)
– CC1111 (8051)
– ATmega32U4 (AVR)

● AltOS – real time OS
– Multi-tasking
– Non-preemptive
– Sleep/wakeup scheduling
– Mutexes
– Timers

USB TRNG Design

● NXP Cortex M0
● Bootloader reflashable via USB
● Entropy sources based on

– band gap voltage ref. (zener diode)
– noise amplification (transistor)
– dual op-amp w/rail-to-rail outputs

FLOSS + OSHW

● hw : TAPR OHL 1.0
● sw : GPLv2
● Faciliates community collaboration
● Enables independent implementation

– Is Bart Massey in the room?

Quality Assessment

● FIPS 140-2 Continuous random number
generator test (on device)

● Evaluation with accepted test
suites (e.g. TestU01)

● Note: Green's observation low level
testing is required (conditioning
may not be enough)

How can we use USB TRNG?

● Can be connected to the GNU/Linux
Entropy Key Daemon (ekeyd) which
can provide entropy directly to the
kernel pool

● Serving via the EGD protocol

Current Status

● Hardware: early prototype stage
● Software: design stage
● Testing: Use existing test suites at
the most raw level (pre-conditioning)

● Participate!
http://altusmetrum.org/USBtrng/
IRC OFTC #altusmetrum
http://lists.gag.com

http://altusmetrum.org/USBtrng/
http://lists.gag.com/

Next Steps
● Alpha test prototype hardware
● Develop code path to ekeyd/EGD
● Document (triage) potential attack vectors
(e.g. firmware upgrade, USB snooping).

● Learn about krngd
● Learn from tfheen Mon, 02 Nov 2009 -
Distributing entropy
– How much entropy is often needed
– EGD memory leaks
– Client auto-reconnection

questions?

“Cuddles asks a question”
(c) 2013 Tom Marble
CC-by-sa 4.0

tmarble.info9.net
lists.gag.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

